Dossier Nr. 111

Climate Justice in the Pacific Region

Autoren:
Teilnehmer am Workshop „Rainbow Warrior Climate Justice Workshop“ in Port Vila, Juni 2015

Erscheinungsdatum: Juli 2015
Dossier ISSN 2198-6967
Anmerkung der Redaktion:
Das Dossier ist in englischer Sprache.

Die Urheberrechte der Texte liegen bei den Autoren selbst.

• Typhoon wind speeds are about 10% stronger than they were in the 1970s

• Higher proportion of category 4 & 5 typhoons

• Warmer oceans = more intense typhoons

• Warmer conditions are likely to produce typhoons with peak wind speeds around 14% higher by 2100

• Category 3 -> Category 4
Typhoon wind speeds are likely to produce typhoons with peak wind speeds around 14% higher by 2100.
MAJOR CARBON PRODUCER AND GLOBAL CO₂ AND METHANE EMISSIONS

- Global emissions from fossil fuels & cement (CDIAC)"
- Emissions sourced to top 90 major carbon producers (Heede 2013)
HOW CLIMATE CHANGE MADE TYPHOON HAIYAN SO DANGEROUS

1. Pacific Ocean temps are much warmer than normal. Warmer oceans = more powerful storms.
2. Warmer oceans = heavier rainfall in storms.
3. Higher sea levels = higher storm surge.

CONNECT THE DOTS.
“Climate change is damaging food supplies, spreading disease and creating refugees, and it is poised to become the most massive human rights violation the world has ever seen.”

- Kathleen Dean Moore
Oregon State University philosophy professor emerita
“This is a very devastating cyclone... I term it a monster that has hit Vanuatu. We see the level of sea rise... The cyclone seasons, the warm, the rain, all this is affected. This year we have more than in any year... Yes, climate change is contributing to this.”

- Baldwin Lonsdale
President of Vanuatu

(in a speech at the UN world conference in Sendai, Japan on March 16)
Weitere Infos zu den bisherigen Folien und zur Autorin: anna.abad@greenpeace.org
2002- Greenpeace, FOE, and Municipalities sued Overseas Private Investment Corporation and US Export-Import Bank!

2005- A federal judge found that the Plaintiffs suffering economic and other damages from climate change had standing to sue under NEPA

2009- ExIm agreed to take CO2 emissions into account when evaluating fossil fuel projects and create an organization-wide carbon policy. OPIC established a goal of reducing GHG associated with projects by 20% over the next 10 years. Both agencies committed to increasing financing for renewable energy.

2014- President Obama called for an end to U.S. government support for public financing of new coal plants overseas

Climate liability
The law may provide redress or remedy to those who are or may be adversely affected by climate change, and control the behaviour of those public or private actors who may be directly or indirectly responsible for it.
• In September 2013, the UN Secretary General Ban Ki-moon called for the first ever World Humanitarian Summit (WHS) to be held in Istanbul in May 2016.

• The summit aims to set out a future agenda to make humanitarian action more effective, inclusive, accountable and, overall, a better fit for a changing world.
A new agenda for global action

- The Millennium Development Goals (MDGs) provided a shared framework for global action and cooperation on development from 2000 to the end of 2015.

- Ahead of the MDG deadline, a set of 17 Sustainable Development Goals (SDGs) have been agreed to and 169 targets are being negotiated for the post-2015 era.

- Intergovernmental negotiations began in January (2015) and this September, the United Nations General Assembly will adopt its new development agenda.
Sustainable Development Goals

1: Poverty
2: Food Security
3: Health
4: Education
5: Gender Equality
6: Water & Sanitation
7: Energy
8: Economic growth, employment, decent work
9: Infrastructure & Industrialisation
10: Inequality
11: Cities & human settlements
12: Consumption
13: Climate change
 - Take urgent action to combat climate change and its impacts
14: Oceans & Seas
15: Ecosystems, Forests, biodiversity
16: Peace & Security, access to Justice
17: Global Partnership
COP 21 Paris

- World Leaders will meet under UNFCC for the Conference of Parties (COP) 21st meeting.
- This meeting is the most critical for reaching a binding agreement.
Small Islands Developing States (SIDS) Major Groups (31 Aug.14, Apia)

- People must be at the centre of the S.A.M.O.A Pathway Declaration and Implementation Plan, connected by accountable, genuine and durable partnerships where human rights, gender equality, environmental sustainability and economic justice are the core of all sustainable development pursuits in Small Island Developing States.
CSO Partnership for Development Effectiveness (CPDE)

Keeping the promise of Busan (December, 2011) alive and advocating for CSO representation and voice at the table as an equal.

"Development effectiveness is about the impact of development actors, including donors and governments, on improving the lives of the poor and marginalised. It promotes sustainable positive change that addresses, within a Human Rights and democratic framework, the root causes as well as the symptoms of poverty, inequality and marginalisation."

(Open Forum for Development Effectiveness Tool Kit, 2010)
Pacific Islands Association of Non-Governmental organisations (PIANGO)

The Conch Shell symbolises "Communication". The sound of the conch shell is a summons for people to gather in a particular place. The circular sand drawing reflects 'Spiritual Unity or Oneness'.
WHO is PIANGO, WHAT does it do?
Set up in early 1980s as authentic voice for Pacific Island NGOs, formally set up in Port Vila in 1991 then moved to Suva in 2004:

• A regional network of national umbrella NGOs and national focal points or coordinating bodies known as National Liaison Units (NLUs) in 21 Pacific Island countries and territories.
• A regional umbrella platform of national umbrella NGOs
• Providing a common voice of Pacific National NGOs at regional and international fora
• Taking collective action of Pacific Umbrella NGOs to respond to priority regional and global concerns
PIANGO Network

- ASUNGO – American Samoa
- ACFID - Australia
- CIANGO/CICSO – Cook Islands
- FCROSS – Fiji
- KANGO – Kiribati
- FANGO – FSM
- NIANGO – Nauru
- CID – New Zealand
- NIUANGO – Niue
- PNGCSF – PNG (Interim)
- SUNGO – Samoa
- DSE – Solomon Islands
- HITI TAU – French Polynesia
- CSFT – Tonga
- TANGO – Tuvalu
- VANGO – Vanuatu
- Payuta – Guam
- MICNGOs – Marshall Islands
- FONGTIL – Timor Leste
- Palau Community Action Agency - Palau
- UTLN – Kanaky
- Wallis & Futuna
- Tokelau
- West Papua – Coalition/Fokir LSM?

PRINGO Alliance

- PIANGO- Pacific Islands Association of NGOs
- FISPI- Foundation of the Peoples’ of the South Pacific
- PCRC- Pacific Concerns Resource Centre
- COPE- Council of Pacific Education
- PDF- Pacific Disability Forum
- PACFAW- Pacific Foundation for the Advancement of Women
- PCC- Pacific Conference of Churches
- FWCC- Fiji Women’s Crisis Centre/Pacific Network Against Violence Against Women
- Greenpeace
- WWF South Pacific Programme – World Wild Life
- PINA- Pacific Islands News Association
- SPOCTU- South Pacific and Oceanic Council of Trade Unions
- PANG - Pacific Alliance on Globalisation
Pacific Regional Alliances

- **Pacific Islands Forum Secretariat (PIFS)** - In June 2007, the granted consultative status to PIANGO but no accreditation yet. Pacific Plan Review and New regional integration mechanism

- **Pacific Islands Development Forum (PIDF)** – A new regional body focused on promoting Green Economy. PIANGO represents Pacific CSOs on the Governing Body of PIDF and an MOU is under consideration

- **Pacific Regional NGO Alliance** – PIANGO is a member of this alliance of 13 Pacific regional NGOs who are signatories to an MOU to collaborate on the Oceanus Agenda
The Post 2015 Challenge

PPP

PEOPLE, PLANET, PARTICIPATION,
LEAVING NO ONE BEHIND

Today is about engaging collectively as partners and warriors (of the Rainbow) to ensure the Post 2015 agenda is ambitious and transformative – and how we can support you and amplify voices

Autor der oben gefolgten Folien: Emele Duituturaga, PIANGO Executive Director
Relevant Laws

- **International Human Rights Law**
 - Charter of the United Nations (UN); international and regional human rights treaties
 - Human rights norms embodied in international law as custom/ general principles of law
 Universal rights; ‘maximum effort’ obligations for all States that are specific as to outcome

- **International Climate Change Law**
 - UN Framework Convention on Climate Change (UNFCCC); Kyoto Protocol
 - Norms of custom pertaining to environmental protection (esp. ‘no-harm’ rule)
 Differentiated obligations aimed at preventing ‘dangerous anthropogenic interference with the climate system’, relatively specific as to conduct

- **General law of State Responsibility**
 - Norms of custom reflected in the International Law Commission’s Articles on the Responsibility of States for Internationally Wrongful Acts
 Specific rules on attribution of conduct and legal consequences of violations
Tuvalu v United States of America and Australia (x)

- Proposal by Tuvalu in 2002 to bring a claim before the International Court of Justice (ICJ) against the USA and Australia for failing to take measures to curb emissions;
- Claim not pursued for political and technical reasons.

Autorin der oben gefolgten Folien: Margaretha Wewerinke
Cyclone Pam Effects in Kiribati

While this beautiful country was reeling from the direct effects of Cyclone Pam, Kiribati had its share as well.

The pictures that were taken during the storm and immediately after, will best explain the situations and realities that Kiribati went through during cyclone Pam.

It is unfortunate that we could not get all the pictures from all the outer islands but at least we had some from the most southern parts of the Kiribati group included in this presentation.

Some of you may have seen them as they are all downloaded from Facebook accounts of many i-Kiribati.

We are sorry that we could not get all the proper sources for the pictures used in this presentation. We will get them in due time. But don’t worry, we will not be prosecuted for their use.
Cyclone Pam is telling us that:

1. All our small Pacific countries are affected as one in our shared ocean.
2. Our livelihood and way of life are affected and that we can not do much when the calamity comes. Kiribati, Tuvalu and most low lying coral atolls are the most vulnerable. Imagine what would happened if the same strength and force of cyclone Pam that hit this country also hit Kiribati! I am sure you would not see the Kiribati delegation attending this workshop! I would not try to guess what would happen with Tarawa, our capital, where more than half of the Kiribati population reside. How long would our luck last? Its anyone’s guess.

3. We must therefore unite and get our voices heard of our plight. Let us bombard the skeptics who are more concerned about economics and wealth with the realities we are facing. Let us not get weary of reminding them that our existence is at stake. Let us find ways to make them listen to us, even if it means suing them to court. And most importantly, let us implement strategies that have been identified to help reduce and control the climate change and its ill effects. Let us not procrastinate because time is not on our side!
PACIFIC ISLANDS BRIEFING PAPER: KEY HARMS FROM CLIMATE CHANGE

There is little doubt that burning fossil fuels is the main source of the ever-increasing CO₂ levels in the atmosphere and associated temperature increase. The likely impacts of these changes on the world’s oceans and the vulnerable island states that rely upon them are well documented. Although Small Island Developing States (SIDS) themselves emit negligible amounts of greenhouse gases, they face a disproportionately high level of impact from climate change¹.

Sea-level rise: Global average sea level is rising. This rise has accelerated since pre-industrial times and will accelerate further in this century, very likely rising at a faster then we have seen in the last 40 years. For high emissions scenarios the Intergovernmental Panel on Climate Change (IPCC) now predicts a 0.45 to 0.82m for the period 2081-2100. Even with aggressive emissions reductions, a rise of between 26 to 0.55m is projected for the same period.²

Sea levels are rising faster in the Pacific Islands than the rest of the world. According to the United Nations Environment Programme (UNEP), sea level in the island of Kosrae in the Federated States of Micronesia is rising at a rate of 10 mm per year, compared to a global mean sea level rise of 3.2mm per year. In the tropical western Pacific, where many small islands are located, the rate of sea level rise was 12 mm per year between 1993 and 2009 - about four times the global average.³
The IPCC recognises that island communities and low-lying areas are especially vulnerable to sea-level rise, which is expected to exacerbate inundation, storm surges, erosion and other coastal hazards, thus threatening vital infrastructure, settlements and facilities that support the livelihood of communities.

In 2009, a report by the International Fund for Agricultural Development (IFAD), estimated that in the Majuro atoll in the Marshall Islands and Kiribati, as much as 80% and 12.5%, respectively, of total land would be vulnerable under a 1m rise in sea level. Low-lying island states and atolls are likely to experience increased sea flooding, inundation and salinization as a direct consequence of sea level rise. In particular, estimated impacts of sea-level rise on Pacific Islands’ coastal communities are quantified in 77,018 km of shoreline affected with direct costs of 1,419 million of USD per year at sub-regional level associated with 30-50 cm of sea-level rise according to the same report. Other dire consequences can be saline intrusion into freshwater lenses or more flooding from the sea in coastal communities.

Sea level rise could hurt valuable mangroves: Mangroves play an essential role in protecting coastlines from erosion and storms, supporting water quality and providing breeding grounds for fish. However, studies have suggested that mangrove forests in some areas will be lost as a result of elevated sea levels, with those on small islands in the Pacific being most vulnerable. Using the IPCC’s upper projection for global sea level rise through the year 2100, a 2006 UNEP report projected a reduction in area by roughly 12.9% of the current 524,369 ha of mangroves of the 16 Pacific Island countries and territories where
mangroves are indigenous. The report estimates that the loss of a single hectare of mangroves will cost local communities between 200 and 900 thousand US dollars in lost revenues, due to the importance of these plants to local ecosystem products and services.\(^6\)

IFAD has projected a decline of mangrove area in the Pacific Islands of between 1% and 13% associated with an increase of 2°C and 4°C temperature increase respectively.\(^7\)

Sea-temperature rise: The IPCC has also revealed that between 1971 and 2010, our oceans took up 93% of the heat trapped by industrial greenhouse gas emissions. Initially absorbed by surface waters, the heat is increasingly moving into the deep ocean\(^8\). This warming leads to rising sea levels, as well as significant impacts on biodiversity.

Ocean acidification: The oceans currently absorb approximately a quarter of the CO\(_2\) produced by burning fossil fuels. When CO\(_2\) dissolves in sea water it forms carbonic acid and as more CO\(_2\) is taken up by the oceans’ surface, the pH decreases, moving towards a less alkaline and therefore more acidic state. Given the most recent estimates for annual global emissions of CO\(_2\) (around 32 Gt in 2014), it can be estimated that human activities are contributing around 1 million tonnes of CO\(_2\) pollution to the global oceans every hour\(^9\). The resulting increase in acidity (decrease in pH) observed over the last 200 years likely exceeds pH changes experienced at any time over at least the last 55 million years, in terms of both extent and speed of change\(^10\).

Such a monumental alteration in basic ocean chemistry is likely to have wide implications for ocean life, especially for those organisms that require calcium carbonate to build shells or skeletons. Ocean acidification, combined with sea surface temperature rise and sea level rise, is likely to heavily impact coral reefs, fisheries and other marine-based resources.
PACIFIC ISLANDS BRIEFING PAPER: KEY HARMS FROM CLIMATE CHANGE

There is little doubt that burning fossil fuels is the main source of the ever-increasing CO₂ levels in the atmosphere and associated temperature increase. The likely impacts of these changes on the worlds’ oceans and the vulnerable island states that rely upon them are well documented. Although Small Island Developing States (SIDS) themselves emit negligible amounts of greenhouse gases, they face a disproportionately high level of impact from climate change.

Sea-level rise: Global average sea level is rising. This rise has accelerated since pre-industrial times and will accelerate further in this century, very likely rising at a faster rate than we have seen in the last 40 years. For high emissions scenarios the Intergovernmental Panel on Climate Change (IPCC) now predicts a 0.45 to 0.82m for the period 2081-2100. Even with aggressive emissions reductions, a rise of between 26 to 0.55m is projected for the same period.

Sea levels are rising faster in the Pacific Islands than the rest of the world. According to the United Nations Environment Programme (UNEP), sea level in the island of Kosrae in the Federated States of Micronesia is rising at a rate of 10 mm per year, compared to a global mean sea level rise of 3.2mm per year. In the tropical western Pacific, where many small islands are located, the rate of sea level rise was 12 mm per year between 1993 and 2009 - about four times the global average.

The IPCC recognises that island communities and low-lying areas are especially vulnerable to sea-level rise, which is expected to exacerbate inundation, storm surges, erosion and other coastal hazards, thus threatening vital infrastructure, settlements and facilities that support the livelihood of communities.

In 2009, a report by the International Fund for Agricultural Development (IFAD), estimated that in the Majuro atoll in the Marshall Islands and Kiribati, as much as 80% and 12.5%, respectively, of total land would be vulnerable under a 1m rise in sea level. Low-lying island states and atolls are likely to experience increased sea flooding, inundation and salinization as a direct consequence of sea level rise. In particular, estimated impacts of sea-level rise on Pacific Islands’ coastal communities are quantified in 77,018 km of shoreline affected with direct costs of 1,419 million of USD per year at sub-regional level associated with 30-50 cm of sea-level rise according to the same report. Other dire consequences can be saline intrusion into freshwater lenses or more flooding from the sea in coastal communities.

Sea level rise could hurt valuable mangroves: Mangroves play an essential role in protecting coastlines from erosion and storms, supporting water quality and providing breeding grounds for fish. However, studies have suggested that mangrove forests in some areas will be lost as a result of elevated sea levels, with those on small islands in the Pacific being most vulnerable. Using the IPCC’s upper projection for global sea level rise through the year 2100, a 2006 UNEP report projected a reduction in area by roughly 12.9% of the current 524,369 ha of mangroves of the 16 Pacific Island countries and territories where

2 United Nations Environment Programme (UNEP), Nairobi, Kenya
5 IFAD “Climate Change Impacts- Pacific Islands” www.ifad.org/events/apr09/impact/islands.pdf
mangroves are indigenous. The report estimates that the loss of a single hectare of mangroves will cost local communities between 200 and 900 thousand US dollars in lost revenues, due to the importance of these plants to local ecosystem products and services.

IFAD has projected a decline of mangrove area in the Pacific Islands of between 1% and 13% associated with an increase of 2 C° and 4 C° temperature increase respectively.

Sea-temperature rise: The IPCC has also revealed that between 1971 and 2010, our oceans took up 93% of the heat trapped by industrial greenhouse gas emissions. Initially absorbed by surface waters, the heat is increasingly moving into the deep ocean. This warming leads to rising sea levels, as well as significant impacts on biodiversity.

Ocean acidification: The oceans currently absorb approximately a quarter of the CO2 produced by burning fossil fuels. When CO2 dissolves in sea water it forms carbonic acid and as more CO2 is taken up by the oceans’ surface, the pH decreases, moving towards a less alkaline and therefore more acidic state. Given the most recent estimates for annual global emissions of CO2 (around 32 Gt in 2014), it can be estimated that human activities are contributing around 1 million tonnes of CO2 pollution to the global oceans every hour. The resulting increase in acidity (decrease in pH) observed over the last 200 years likely exceeds pH changes experienced at any time over at least the last 55 million years, in terms of both extent and speed of change.

Such a monumental alteration in basic ocean chemistry is likely to have wide implications for ocean life, especially for those organisms that require calcium carbonate to build shells or skeletons. Ocean acidification, combined with sea surface temperature rise and sea level rise, is likely to heavily impact coral reefs, fisheries and other marine-based resources.

Coral reefs have value: Tropical coral reefs are among the most bio-diverse systems on the planet, supporting one quarter of all marine species. They sustain human society through a range of ecosystem services, such as livelihoods and food security from fisheries, revenue from tourism, erosion prevention and protection from extreme weather events through dissipation of wave energy and lessening inundation and damage during storms.

Not only do coral reefs have important biodiversity value but the ecosystem services they provide have been valued at billions of dollars a year. Approximately 850 million people live within 100 km of and derive some benefits from, coral reefs, with at least 275 million depending directly on reefs for.

7 IFAD “Climate Change Impacts- Pacific Islands” www.ifad.org/events/apr09/impact/islands.pdf

livelihoods and sustenance. Reef-dependence, and consequently vulnerability to reef loss, is particularly high in small-island states, among many countries in the coral triangle, (a marine area located in the western Pacific Ocean that includes the waters of Indonesia, Malaysia, the Philippines, Papua New Guinea, Timor Leste and Solomon Islands) and among coastal populations in developing countries.11

In the Marshall Islands, the average height of land above sea level is approximately 2 metres12. Fragile fringing coral reefs are the only lines of defence against the ocean surge, and the clearance over the reef in the sections that are covered by water is usually no more than a couple of feet. As reefs like this are destroyed, and in combination with sea-level rise, these fragile defences will no longer be sufficient to protect the Islands.13

Coral bleaching and destruction: Unfortunately, coral reef ecosystems, are particularly vulnerable to changes in sea temperature, sea level and oceanic chemistry. A 1°C to 2°C change in local temperature above the normal summer maximum can lead to ‘bleaching’ - a stress response by the coral. Coral bleaching in 1998 and 2010 caused large-scale coral deaths in reef systems around the globe, with the 1998 event heavily impacting Palau in the Western North Pacific sub-region, and Palmyra Atoll in the Central North Pacific sub-region. In the Republic of Palau, nearly one-half (48%) of 946 surveyed colonies were totally bleached, and a further 15% were partially bleached. Coral bleaching has also been observed elsewhere in the Micronesian, Marianas, Samoan, and Hawaiian archipelagos14. The *Reefs at Risk Revisited*15 report (Burke et al., 2011) predicts that by 2050 many of the reefs in the Pacific will bleach annually. This frequency of bleaching is worrying because it allows little time for corals to recover. Annual summer bleaching has already been reported from some parts of American Samoa16.

While corals can recover from these events, repeated episodes are likely to weaken the coral ecosystem, causing a loss of biodiversity and making them more susceptible to disease. Even at the lower range of the IPCC scenarios, the world’s coral reefs are facing serious and potentially devastating consequences, with one to two-thirds projected to be subject to long-term degradation.17

Climate change will harm key fisheries: Fisheries play a critical role in food supply and economic development in many coastal and islands states. In the Pacific, for example, per capita consumption of fish is very high by global standards; recent figures suggest that per capita annual consumption of fish ranges from an estimated 13 kg in Papua New Guinea to more than 110 kg in Tuvalu.18 A significant

11 UNEP Coral Reef Unit: http://coral.unep.ch/Coral_Reefs.html
13 [ibid](http://www.rmiembassy.org/Environment.htm)
proportion of this is fish caught in near-shore habitats, including the highly vulnerable coral reef environments, with subsistence fishing being extremely important.

Climate change is projected to impact coral reef fishes by affecting their behaviour, recruitment, physiology and reproduction. This may lead to declines in abundance or changes in their distribution\(^\text{19}\). The FAO Expert Workshop on Climate Change Implications for Fisheries and Aquaculture\(^\text{20}\) stated that climate change is already altering the distribution patterns of marine species, as well as changing the size and productivity of their habitats\(^\text{21}\). Moreover, productivity is likely to be reduced in most tropical and subtropical oceans. This report notes that ‘climate change is already affecting the seasonality of particular biological processes, radically altering marine and freshwater food webs, with unpredictable consequences for fish production\(^\text{22}\).

Coastal erosion, infrastructure damage, property damage: While climate change is not the only reason for land loss and infrastructure damage in coastal and island communities, it is certainly an exacerbating factor. The IPCC, for example, concludes that it is ‘virtually certain’ that the rates of global mean sea level rise are accelerating. Projected increases to the year 2100 superimposed on extreme sea level events (e.g. swell waves, storm surges, El Nino/Southern Oscillation) present severe sea flood and erosion risks for low lying coastal areas and atoll islands and wave over-wash of seawater will degrade fresh groundwater resources.\(^\text{23}\)

Coastal erosion affects communities and nations (borders can even be redrawn as islands are lost), as many vulnerable individuals experience major property damage that can tip them into poverty. On Tegua Island in Vanuatu in late 2005, an entire coastal village in the north was relocated to higher ground and UNEP has classified the 100 residents of Tegua Island as one of the first communities to be moved out of harm’s way as a result of climate change. At that time, UNEP reported that:

“erosion rates around the village had accelerated to between two and three metres a year”

and that:

“the one metre high coral reef, the previous line of defence against high tides and waves, was being increasingly breached’.\(^\text{24}\)

\(^{21}\) FAO, Fisheries Report No. 870, ibid.,

\(^{22}\) ibid

According to the Secretariat of the Pacific Regional Environment Programme (SPREP), ‘people were being forced to build sea walls and other defences not just to defend their homes, but to defend agricultural land.’

Other Pacific communities have experienced similar fates. The Environment Minister of the Solomon Islands described relocation for some places in his country as the only option because the alternative, ‘building a seawall, is like putting everyone inside a swimming pool’. Inundation from sea level rise could submerge or harm unique Pacific Island cultural artefacts and structures and lands vital for cultural traditions.

Tourism faces profound impacts from climate change: Travel and tourism play a vital role in the economies of the Pacific ACP countries (PACPs) and in most countries is the major driver of economic growth and foreign exchange earnings. For example, in the Cook Islands, tourism produces 90% of foreign exchange earnings and 50% of GDP. For Samoa, Fiji and Vanuatu tourism has now passed all other export industries to become the leading income earner, while in the Solomon Islands it is becoming increasingly important as the country recovers from years of civil unrest. In Papua New Guinea, tourism is increasingly important in providing employment in many regions which accommodate few other commercially viable activities.

According to a recent report by the Asian Development Bank, as the world warms up, the Pacific region as a whole becomes a lesser tourism attraction and its total tourism revenues are expected to fall. The situation would steadily worsen over the century, except for a brief period around 2025 when increases in international tourists from China would outweigh decreases of tourism from other regions. By the end of the century, tourist numbers are expected to fall by about one-third. Under all climate scenarios, the impact of climate change would be to reduce tourism revenues.

When the effects of coastal inundation, coral bleaching, fisheries declines, and increased health risks are combined, the effects on tourism may be larger than those due to temperature alone.

In Pacific Islands, tourism often revolves around diving, snorkelling, and enjoyment of healthy reefs and marine environments. Tourism is, however, highly vulnerable to climate change, with the World Tourism Organisation predicting that ‘in the decade ahead, climate change will become an increasingly pivotal issue affecting tourism development and management’. The economies of countries like the Maldives and the Seychelles are largely dependent on coral reefs through diving and other coastal

29 2013 HOPS SPTO Tourism Statistics – An Assessment
32 Climate Change and Tourism: Responding to Global Challenges; Summary October 2007 of Report prepared by the UNTWO, UNEP and WMO to provide background information for the 2nd International Conference on Climate Change and Tourism (Davos, Switzerland 1-3 October 2007); http://www.unwto.org/climate/support/en/pdfs/summary_davos_e.pdf
tourism and the degradation and extinction of coral reefs, together with accelerated beach erosion, will severely affect the economies of countries in similar positions.

Extreme precipitation, flooding, drought: Pacific Island States, with scarce rainfall and small aquifers, can ill afford to cope with rainfall anomalies linked with climate change, droughts, extreme precipitation, and the associated flash floods. The latter can lead to loss of soil fertility and ruined crops as well as harm to people and infrastructure. Pacific Islands have very vulnerable water resources, especially smaller islands. Residents are mostly dependent on small, fragile freshwater-lens systems and rainfall catchments for their drinking water. During periods of low rainfall, rainfall catchment supplies become depleted leaving residents with groundwater from the freshwater lens as their sole source.

Droughts increase demand on low islands’ limited freshwater resources, while sea-level rise, intense storms, and extreme tides threaten water quality and local agriculture, making these communities some of the most sensitive to climate-induced changes in water supply.

Pacific islands are vulnerable to tropical cyclones: In the last 60 years, the Pacific Region from Taiwan to New Zealand in latitude and from Indonesia to east of Hawaii in longitude has experienced more than 2,400 tropical cyclones – or about 41 per year. Almost 1,000 of these formed south of the equator and 1,400 formed north of the equator. The maximum wind speeds generated by these events range from 74-95 mph for a Category 1 storm to 155 mph for Category 5 storm (as measured on Saffir-Simpson scale).

The damaging factors of tropical cyclones are wind speed, precipitation and coastal surge and many of these storms have impacted one or more of the PICs causing widespread destruction, high economic losses, and many casualties (injuries and fatalities). A study by the United Nations found that:

“In the short to medium term destruction of standing crops, physical infrastructure threats and housing can be severe, calling for a substantial relief and rebuilding effort. GDP can decline sharply and remain depressed for some time and with the likely consequence of considerable macroeconomic instability. In the longer term, damage to productive assets can lead to serious loss of output and economic growth and living standards.”

37 World Bank: PCRAFI Risk Assessment Summary Report 2013

In the future, as temperatures rise, climate change is likely to amplify the destructive effects of tropical cyclones. Theoretical and model experiments show warmer seas drive more intense storms in the future, although the total number is not expected to increase. According to the most recent IPCC Assessment, the global frequency of occurrence of tropical cyclones will either decrease or remain essentially unchanged but it is likely that both global mean tropical cyclone maximum wind speed and precipitation rates will increase39.

A recent study has indeed found that the intensity (wind speed) of cyclones of all strengths in the South Pacific has increased by 2.5 metres per second per decade, with the strongest 20% increasing by as much as 5 metres per second per decade40.

In a warmer world, a combination of rising sea levels and more-intense tropical cyclones may increase the damage caused by an individual cyclone, even if the overall number of cyclones decreases. As well as climbing temperatures creating stronger winds, rising sea levels mean that when storm surges hit, the flooding impact is likely to be higher.

In March 2015, the South Pacific basin witnessed the second most intense cyclone (by pressure) on record. Cyclone Pam was one of only ten storms in the waters east of Australia ever rated Category 5 by the Joint Typhoon Warning Center (JTWC). The official tropical cyclone warning centre for the area, the Fiji Meteorological Service, estimated that Pam's central pressure bottomed out at 896 mb, making it the second most intense tropical cyclone in the South Pacific basin after Cyclone Zoe of 2002. At least eleven were killed, 132,000 people impacted, and damages were at least USD 100 million. Cyclone Pam also had the highest 10-minute sustained wind speed of any South Pacific tropical cyclone41.

Agriculture and drinking water: Rising sea levels are having an impact on fresh water and food production in many Pacific Island States. According to a submission from the Pacific Small Island Developing States to the 64th Session of the UN General Assembly in September 2009, rising sea levels have left salt deposits in the soil and contaminants in the groundwater supply and additionally, floods and rogue waves raise the saltwater table under atolls, poisoning staple crops. Already some farmers are forced to grow their taro in tin containers. Additionally, some of the smaller islands in the atolls have lost their coconut palms to saltwater intrusion42.

The majority of rural Pacific Islands’ people live off of subsistence agriculture, making farming losses a food security issue for the most vulnerable. For instance, over 65\% of Vanuatu’s people rely on subsistence agriculture (yam, taro and banana).

According to a 2011 report prepared for the Australian Government, changes in the time of fruiting of certain species have been reported; for example, breadfruit, mango and citrus, are fruiting over an extended period and/or are showing shifts in the fruiting season. In the Torres Group (Vanuatu), yams planted in the normal planting season are reported to be no longer performing well. Changes in weather patterns are likely to mean that farmers will have to reconsider planting seasons.

An increase in the minimum temperature could affect the spread of the taro leaf blight disease which, in 1993, destroyed taro cultivation in Samoa. The impact of a warmer night temperature will enable sporulation at night, increasing the incidence of the disease. Countries such as Fiji, Tonga and Cook Islands are all vulnerable to the disease due to the susceptibility of their taro varieties.

Besides food security, Pacific states depend on cash crops like sugar cane, banana and non-timber forest products for foreign exchange. IFAD concludes that, in the absence of adaptation, a high island such as Fiji, could experience damage of USD 23 million to 52 million per year by 2050. The overall change in agricultural welfare is expected to range between -8 and +4 billion USD per year facing a 2-4°C temperature increase.

Climate change negatively impacts health outcomes: Climate change will continue to affect human health on the Pacific Islands. Low islands and coastal communities in the WNP sub-region are especially vulnerable due to their low elevation, small land mass, geographic isolation, and limited potable water sources and agricultural resources. Sea-level rise and more frequent inundation by king tides and tropical cyclones may not only contaminate limited groundwater resources but also overcome basic sanitary systems and agricultural fields.

There is a growing concern in island communities in the Caribbean Sea and Pacific and Indian Oceans that freshwater scarcity and more intense droughts and storms could lead to a deterioration in standards of sanitation and hygiene. In such circumstances, increased exposure to a range of health risks, including communicable (transmissible) diseases would be a distinct possibility.

Given that many vector- and water-borne diseases are weather-influenced, climate change impacts on low islands and coastal communities allow for malaria, dengue, diarrhoea and other diseases to increasingly infect some Pacific Island populations. The young, the elderly, and those with pre-existing medical conditions are especially vulnerable to these diseases.

Ciguatera fish poisoning (CFP) occurs in tropical regions and is the most common non-bacterial food-borne illness associated with consumption of fish. Distribution and abundance of the organisms that produce these toxins are reported to correlate positively with water temperature. Consequently, there is

41 Food security in the Pacific and East Timor and its vulnerability to climate change. © Commonwealth of Australia (Department of Climate Change and Energy Efficiency) 201
42 IFAD "Climate Change Impacts- Pacific Islands" http://www.ifad.org/events/apr09/impact/islands.pdf
growing concern that increasing temperatures associated with climate change could increase the incidence of CFP in Pacific island regions47.

The IPCC also notes that in the Pacific many of the anticipated health effects of climate change are expected to be indirect, connected to the increased stress and declining well-being that comes with property damage, loss of economic livelihood, and threatened communities48.

People's Declaration for Climate Justice
Port Vila, Vanuatu
Date: 8 June 2015

We, the people of Vanuatu, Kiribati, Tuvalu, Fiji, Solomon Islands and the Philippines continue to experience the impacts of climate change - the single biggest human rights, environmental and humanitarian crisis of our time. It has claimed thousands of lives, displaced millions of people, damaged livelihoods, and caused a severe economic toll in relief, rehabilitation and reconstruction efforts.

The burning of fossil fuels by big polluters has been found to be primarily responsible for emitting large amounts of greenhouse gases. The concentration of said gases, especially carbon dioxide in the atmosphere causes climate change. An estimated 25-30% of the carbon dioxide emitted by these activities was absorbed by the oceans, causing ocean acidification.

As the people most acutely vulnerable to the impacts of climate change, we will not let the big polluters decide and assign our fate. Our rights and ability to survive must not be dictated by the continued addiction to the burning of fossil fuels. We refuse to accept the “new normal” and demand for climate justice by holding the big polluters and their respective governments to account for their contribution to the climate crisis. Our people and our environment must be preserved for the generations to come.

We are from island states in shared oceans. We stand in solidarity.

We commit to holding those most responsible for climate change accountable. By doing so, we send a message of hope that the people and not the polluters are in charge of humanity’s destiny.

We commit to bring a case that would investigate the human rights implications of climate change and hold the big carbon polluters accountable to appropriate international bodies or processes.